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I. Introduction 
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 Hardware fault injection can be countered at the hardware level, 

but also at the software level 

 

 Software analyses are based on software fault models (defined by 

the Joint Interpretation Library for example [1]) 

– Instruction skip [2] 

– Control-flow corruption (test inversion, …) [3][4] 

– Register/memory corruptions [5][6] 

 

 Problem: There are fault effects that are not modelled in typical 

software fault models [7] 

 

 These effects arise from the complexity of processor 

microarchitecture 

 

 

 
 

 



 
   

I. Introduction 

 Software fault modeling usually consider the processor as a 

black-box [8, 9, 10] and perform physical injections 

 Realistic, but can only infer what happens in the processor from visible results 

 

 We consider the RTL description of the processor available 

and we perform RTL injections in simulation  

 Need to rely on a hardware fault model, but better understanding of the faulty 

behaviors, earlier in the design flow 

 

 Effects obtained in RTL simulation in a LowRISC processor 

[11]: 

– Replace an argument by the last computed value  

– Make an instruction “transient” 

– Commit a speculated instruction 

– … 
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I. Introduction 
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 Our goal is to precisely model RTL faults at the software 

level, and evaluate these models.  

 

 

 

 

 

 

 

 

 We approach security in a global way: hardware & software  

 We want to define cross-layer analyses.  

RTL effects 
(reference) 

Effects 
predicted by 

software fault 
models 

1 2 
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 Principle: Precisely comparing results of 

RTL injections (reference) and software 

injections. 

 

II. Fault injection approach 

1 - Overview 
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II. Fault injection approach 

1 - Overview 

 Injections and observations are performed under the same 

circumstances for both abstraction levels 

 

 Some structures are visible from both abstraction levels 

(register-file, memory) ; others, hidden registers, are only 

seen at the hardware level. 

 

 Observation: 

– Register-file 

– Memory 
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II. Fault injection approach 

2 – Characterization programs 

 Fault effects can vary depending on the precise 

instruction sequence  Small assembly contexts 

that represent various situations: 

 

 

 

 

 

 

8 

Prologue_instruction_1 
Prologue_instruction_2 
Target_instruction                // Injection + Observation immediate effects 
Epilogue_instruction_1 
Epilogue_instruction_2 
Epilogue_instruction_3 // Observation propagation effects 



 
   

II. Fault injection approach 

3 – RTL fault injection 

 Bit-flips injected through simulator commands (mostly 

single-bit, but also some multiple-bit injections) 

 

 RISC-V LowRisc v0.4 processor (5-stage pipeline) 

 

 Pipelined execution  exact injection instant depends 

on which flip-flop is faulted 
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II. Fault injection approach 

4 – Software fault injection 

 Software fault injection through a program mutation 

tool. 

 

 Constraints: 

– Precise modeling  takes the binary as input to execute the 

exact same thing in hardware and software and to eliminate 

compiler influence 

– Effects are varied  need flexibility 

– Need to represent information not available at the binary level 

(like the value of some hidden registers)  representation of 

the execution at a higher level (in our case, we chose C) 

10 



 
   

11 

II. Fault injection approach 

4 – Software fault injection 

Mutation tool 

Mutant: binary (extended) with 
faulty behavior 

Software fault model Executable file  
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II. Fault injection approach 

4 – Software fault injection 

Mutation tool 

Software fault model 
[…] 

 0x06ac:    ADDI  x15 = x0 + 85 

[…] 



 
   

[…] 

 0x06ac:    ADDI  x15 = x0 + 85 

[…] 
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II. Fault injection approach 

4 – Software fault injection 

Mutation tool 

Software fault model 

l06ac: // ADDI x15, x0, 85 

   arg1 = reg[0];  arg2 = 85;     // Decode 

 

   res = arg1 + arg2;     // Execute 

 

   reg[15]=res;  // Write-Back 
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[…] 

 0x06ac:    ADDI  x15 = x0 + 85 

[…] 
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II. Fault injection approach 

4 – Software fault injection 

Mutation tool 

Software fault model 

l06ac: // ADDI x15, x0, 85 

   arg1 = reg[0];  arg2 = 85;     // Decode 

   if(injection)  arg1=fwd; 

   res = arg1 + arg2;     // Execute 

   fwd=res; 

   reg[15]=res;  // Write-Back 
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III. Cross-layer analyses 

1 - Inputs 
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III. Cross-layer analyses 

1 - Inputs 

 Characterization programs:  

– 105 small assembly contexts 

– VerifyPIN [12] version 6 

– LittleXorkey 

 

 Target flip-flops:  

– All flip-flops from the last three pipeline stages. Total: 1308 flip-flops. 

Excludes the register-file and memory. 

 

 Software fault models: 49 models built mainly to cover single-

bit injections 

– 32 simple bit-flips in the result of the instruction 

– 6 typical (skip, test inversion…) 

– 11 non-typical (related to forwarding for example) 
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III. Cross-layer analyses 

2 - Coverage metric 

 Among the RTL faults, what proportion are 

correctly predicted by software fault models ? 

 𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆 =  
𝒂𝒓𝒆𝒂 𝟑

𝒂𝒓𝒆𝒂 𝟏  + 𝒂𝒓𝒆𝒂 𝟑
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III. Cross-layer analyses 

2 - Coverage metric 

 Results – exhaustive single-bit campaigns 

 

 

 

 

 Results – statistical multiple-bit campaigns on asm contexts 
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  Silent Exception Unknown Analyzable Coverage 

Assembly contexts 80.6% 3.3% 0.6% 15.4% 24.0% 

VerifyPIN 65.5% 2.3% 22.4% 9.8% 28.7% 

LittleXorKey 76.6% 2.7% 2.8% 17.9% 29.0% 

  Silent Exception Unknown Analyzable Coverage 

1-bit 80.6% 3.3% 0.6% 15.4%    24.04% 

2-bit 66.2 ± 0.3% 6.4 ± 0.2% 1.2 ± 0.1% 26.1 ± 0.3% ~ 22.51% 

3-bit 54.8 ± 0.4% 9.4 ± 0.2% 1.7 ± 0.1% 34.0 ± 0.3% ~ 20.21% 

4-bit 46.6 ± 0.5% 12.0 ± 0.3% 2.3 ± 0.2% 39.2 ± 0.5% ~ 18.41% 

5-bit 40.0 ± 0.5% 14.4 ± 0.4% 2.5 ± 0.2% 43.1 ± 0.5% ~ 17.68% 



 
   

III. Cross-layer analyses 

2 - Coverage metric 

 Low coverage shows the difficulty to model faults. 

 Reasons to explain this low coverage:  

– Injection in many hidden registers 

– Strict comparisons (without considering the instantaneous 

effect, coverages increase to 24.7%, 44,2% and 49,4%) 

 

  Among the best models:  

– Extended instruction skip (a little bit better than typical 

instruction skip) 
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III. Cross-layer analyses 

3 – Uncovered flip-flops 

 Flip-flops creating the most faulty behaviors 
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III. Cross-layer analyses 

4 – Fidelity metric 

 Among software faults, what proportion correctly 

predicts actual RTL faults ? 

 𝑭𝒊𝒅𝒆𝒍𝒊𝒕𝒚 =  
𝒂𝒓𝒆𝒂 𝟑

𝒂𝒓𝒆𝒂 𝟐  + 𝒂𝒓𝒆𝒂 𝟑
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III. Cross-layer analyses 

4 – Fidelity metric 

 Globally, fidelity = 76.5% 

 

 Very good models: replacing an argument or the 

result of an operation by 0       ~100% 

 

 Good models: instruction skip   ~80% 

 

 Bad models: two models have a fidelity of 60.7% 

and 41.4%. They could be enhanced. 
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III. Cross-layer analyses 

5 – Model profiles 

 How to reproduce in an RTL simulation behaviors 

predicted by a software fault model? 

 Model profiles show the most likely flip-flops to 

target. 
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IV. Conclusion 

 Presented a cross-layer approach to study fault 

injection, based on precise comparisons between 

RTL and software injections 

 Multiple analyses to think security globally 

hardware + software 
 

 Perspective: using other hardware fault models 

(considering limited attacker power) 
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Thanks for your attention ! 

 

Questions ? 
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Skip/skip_mem/skip_wb 1-bit 2-bit 3-bit 4-bit 5-bit 

Assembly contexts 2.8/3.3/3.3 2.9/3.6/3.5 3.1/3.6/3.5 3.0/3.5/3.4 3.2/4.2/4.0 

VerifyPIN 8.0/8.6/8.4 8.2/8.7/8.5 8.1/8.8/8.5 8.5/9.1/8.8 8.3/8.8/8.5 

LittleXorKey 3.2/3.5/4.2 3.0/3.4/4.5 3.0/3.3/4.1 2.9/3.2/4.0 2.7/3.0/3.9 

 Coverage of the instruction skip model, and of 2 

more advanced skip models for various injection 

campaigns 


