

Bridging the Gap between RTL and Software Fault

Injection: a Methodology for Accurate Fault Modeling

Johan Laurent1, Vincent Beroulle1, Christophe

Deleuze1, Florian Pebay-Peyroula2

1

This work was funded thanks to the French national program 'programme
d’Investissements d’Avenir, IRT Nanoelec' ANR-10-AIRT-05

1 Univ. Grenoble Alpes, Grenoble INP, LCIS
26000 Valence, France
firstname.lastname@lcis.grenoble-inp.fr

2 Univ. Grenoble Alpes, CEA, LETI
38000 Grenoble, France
firstname.lastname@cea.fr

Journée thématique sur les Attaques par
Injection de Fautes

September 24th 2020

Summary

 I. Introduction

 II. Fault injection approach

1 - Overview

2 - Characterization programs

3 - RTL fault injection

4 - Software fault injection

 III. Cross-layer analyses

1 - Inputs

2 - Coverage metric

3 - Uncovered flip-flops

4 - Fidelity metric

5 - Model profiles

 IV. Conclusion & perspectives

2

I. Introduction

3

 Hardware fault injection can be countered at the hardware level,

but also at the software level

 Software analyses are based on software fault models (defined by

the Joint Interpretation Library for example [1])

– Instruction skip [2]

– Control-flow corruption (test inversion, …) [3][4]

– Register/memory corruptions [5][6]

 Problem: There are fault effects that are not modelled in typical

software fault models [7]

 These effects arise from the complexity of processor

microarchitecture

I. Introduction

 Software fault modeling usually consider the processor as a

black-box [8, 9, 10] and perform physical injections

 Realistic, but can only infer what happens in the processor from visible results

 We consider the RTL description of the processor available

and we perform RTL injections in simulation

 Need to rely on a hardware fault model, but better understanding of the faulty

behaviors, earlier in the design flow

 Effects obtained in RTL simulation in a LowRISC processor

[11]:

– Replace an argument by the last computed value

– Make an instruction “transient”

– Commit a speculated instruction

– …

4

I. Introduction

5

 Our goal is to precisely model RTL faults at the software

level, and evaluate these models.

 We approach security in a global way: hardware & software

 We want to define cross-layer analyses.

RTL effects
(reference)

Effects
predicted by

software fault
models

1 2

3

 Principle: Precisely comparing results of

RTL injections (reference) and software

injections.

II. Fault injection approach

1 - Overview

6

Reference injections

3. RTL
injections

5. SW
injections

4. Software
Fault Models

1.
Characterization

Programs

6. Analysis
and Metrics

2. Target flip-
flop(s)

II. Fault injection approach

1 - Overview

 Injections and observations are performed under the same

circumstances for both abstraction levels

 Some structures are visible from both abstraction levels

(register-file, memory) ; others, hidden registers, are only

seen at the hardware level.

 Observation:

– Register-file

– Memory

7

II. Fault injection approach

2 – Characterization programs

 Fault effects can vary depending on the precise

instruction sequence Small assembly contexts

that represent various situations:

8

Prologue_instruction_1
Prologue_instruction_2
Target_instruction // Injection + Observation immediate effects
Epilogue_instruction_1
Epilogue_instruction_2
Epilogue_instruction_3 // Observation propagation effects

II. Fault injection approach

3 – RTL fault injection

 Bit-flips injected through simulator commands (mostly

single-bit, but also some multiple-bit injections)

 RISC-V LowRisc v0.4 processor (5-stage pipeline)

 Pipelined execution exact injection instant depends

on which flip-flop is faulted

9

II. Fault injection approach

4 – Software fault injection

 Software fault injection through a program mutation

tool.

 Constraints:

– Precise modeling takes the binary as input to execute the

exact same thing in hardware and software and to eliminate

compiler influence

– Effects are varied need flexibility

– Need to represent information not available at the binary level

(like the value of some hidden registers) representation of

the execution at a higher level (in our case, we chose C)

10

11

II. Fault injection approach

4 – Software fault injection

Mutation tool

Mutant: binary (extended) with
faulty behavior

Software fault model Executable file

12

II. Fault injection approach

4 – Software fault injection

Mutation tool

Software fault model
[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

13

II. Fault injection approach

4 – Software fault injection

Mutation tool

Software fault model

l06ac: // ADDI x15, x0, 85

 arg1 = reg[0]; arg2 = 85; // Decode

 res = arg1 + arg2; // Execute

 reg[15]=res; // Write-Back

1

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

14

II. Fault injection approach

4 – Software fault injection

Mutation tool

Software fault model

l06ac: // ADDI x15, x0, 85

 arg1 = reg[0]; arg2 = 85; // Decode

 if(injection) arg1=fwd;

 res = arg1 + arg2; // Execute

 fwd=res;

 reg[15]=res; // Write-Back

2

III. Cross-layer analyses

1 - Inputs

15

Reference injections

3. RTL
injections

5. SW
injections

4. Software
Fault Models

1.
Characterization

Programs

6. Analysis
and Metrics

2. Target flip-
flop(s)

III. Cross-layer analyses

1 - Inputs

 Characterization programs:

– 105 small assembly contexts

– VerifyPIN [12] version 6

– LittleXorkey

 Target flip-flops:

– All flip-flops from the last three pipeline stages. Total: 1308 flip-flops.

Excludes the register-file and memory.

 Software fault models: 49 models built mainly to cover single-

bit injections

– 32 simple bit-flips in the result of the instruction

– 6 typical (skip, test inversion…)

– 11 non-typical (related to forwarding for example)

16

III. Cross-layer analyses

2 - Coverage metric

 Among the RTL faults, what proportion are

correctly predicted by software fault models ?

 𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆 =
𝒂𝒓𝒆𝒂 𝟑

𝒂𝒓𝒆𝒂 𝟏 + 𝒂𝒓𝒆𝒂 𝟑

17

RTL visible
effects

(reference)

Visible effects
predicted by

software fault
models

1 2

3

III. Cross-layer analyses

2 - Coverage metric

 Results – exhaustive single-bit campaigns

 Results – statistical multiple-bit campaigns on asm contexts

18

 Silent Exception Unknown Analyzable Coverage

Assembly contexts 80.6% 3.3% 0.6% 15.4% 24.0%

VerifyPIN 65.5% 2.3% 22.4% 9.8% 28.7%

LittleXorKey 76.6% 2.7% 2.8% 17.9% 29.0%

 Silent Exception Unknown Analyzable Coverage

1-bit 80.6% 3.3% 0.6% 15.4% 24.04%

2-bit 66.2 ± 0.3% 6.4 ± 0.2% 1.2 ± 0.1% 26.1 ± 0.3% ~ 22.51%

3-bit 54.8 ± 0.4% 9.4 ± 0.2% 1.7 ± 0.1% 34.0 ± 0.3% ~ 20.21%

4-bit 46.6 ± 0.5% 12.0 ± 0.3% 2.3 ± 0.2% 39.2 ± 0.5% ~ 18.41%

5-bit 40.0 ± 0.5% 14.4 ± 0.4% 2.5 ± 0.2% 43.1 ± 0.5% ~ 17.68%

III. Cross-layer analyses

2 - Coverage metric

 Low coverage shows the difficulty to model faults.

 Reasons to explain this low coverage:

– Injection in many hidden registers

– Strict comparisons (without considering the instantaneous

effect, coverages increase to 24.7%, 44,2% and 49,4%)

 Among the best models:

– Extended instruction skip (a little bit better than typical

instruction skip)

19

III. Cross-layer analyses

3 – Uncovered flip-flops

 Flip-flops creating the most faulty behaviors

20

0

10

20

30

40

50

60

70

80

90

100

Fautes
couvertes

Fautes non
couvertes

III. Cross-layer analyses

4 – Fidelity metric

 Among software faults, what proportion correctly

predicts actual RTL faults ?

 𝑭𝒊𝒅𝒆𝒍𝒊𝒕𝒚 =
𝒂𝒓𝒆𝒂 𝟑

𝒂𝒓𝒆𝒂 𝟐 + 𝒂𝒓𝒆𝒂 𝟑

21

RTL visible
effects

(reference)

Visible effects
predicted by

software fault
models

1 2

3

III. Cross-layer analyses

4 – Fidelity metric

 Globally, fidelity = 76.5%

 Very good models: replacing an argument or the

result of an operation by 0 ~100%

 Good models: instruction skip ~80%

 Bad models: two models have a fidelity of 60.7%

and 41.4%. They could be enhanced.

22

III. Cross-layer analyses

5 – Model profiles

 How to reproduce in an RTL simulation behaviors

predicted by a software fault model?

 Model profiles show the most likely flip-flops to

target.

23

0 50 100 150 200

ex_ctrl_wxd

ex_reg_valid

ex_ctrl_tagw

mem_reg_valid

mem_ctrl_wxd

wb_ctrl_wxd

wb_reg_valid

ex_ctrl_div

ex_ctrl_sel_alu1…

ex_ctrl_sel_alu1…

bypass_rd_mux…

wb_reg_replay

Number of times a flip-flop produces the
same effect as the skip fault model.

0 20 40 60 80

ex_ctrl_sel_alu2[1]
ex_reg_rs_msb_0[3]

bypass_rd_mux_reg_1[2]
ex_reg_rs_lsb_1[0]

ex_reg_inst[22]
ex_reg_rs_lsb_0[0]
ex_ctrl_sel_imm[0]

bypass_rd_mux_reg_2[2]
ex_reg_rs_msb_1[0]

ex_ctrl_sel_imm[2]
ex_reg_rs_msb_0[0]

ex_reg_rs_lsb_0[1]

Number of times a flip-flop produces the
same effect as the arg2_4 fault model.

IV. Conclusion

 Presented a cross-layer approach to study fault

injection, based on precise comparisons between

RTL and software injections

 Multiple analyses to think security globally

hardware + software

 Perspective: using other hardware fault models

(considering limited attacker power)

24

Thanks for your attention !

Questions ?

References

[1] Joint Interpretation Library, “Application of Attack Potential to Smartcards.” Jan-2013.

[2] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Formal verification of a software countermeasure against

instruction skip attacks,” presented at the PROOFS 2013, 2013.

[3] M. L. Potet, L. Mounier, M. Puys, and L. Dureuil, “Lazart: A Symbolic Approach for Evaluation the Robustness of

Secured Codes against Control Flow Injections,” in Verification and Validation 2014 IEEE Seventh International

Conference on Software Testing, 2014, pp. 213–222.

[4] J. Vankeirsbilck, N. Penneman, H. Hallez, and J. Boydens, “Random Additive Signature Monitoring for Control Flow

Error Detection,” IEEE Trans. Reliab., vol. 66, no. 4, pp. 1178–1192, Dec. 2017.

[5] M. Christofi, B. Chetali, L. Goubin, and D. Vigilant, “Formal verification of an implementation of CRT-RSA algorithm,”

presented at the Security Proofs for Embedded Systems (PROOFS), 2012, pp. 28–48.

[6] A. Höller, A. Krieg, T. Rauter, J. Iber, and C. Kreiner, “QEMUBased Fault Injection for a System-Level Analysis of

Software Countermeasures Against Fault Attacks,” in 2015 Euromicro Conference on Digital System Design, 2015, pp.

530–533.

[7] H. Cho, S. Mirkhani, C. Y. Cher, J. A. Abraham, and S. Mitra, “Quantitative evaluation of soft error injection techniques

for robust system design,” in 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), 2013, pp. 1–10.

[8] M. S. Kelly, K. Mayes, and J. F. Walker. 2017. Characterising a CPU fault attack model via run-time data analysis. In

2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), 79–84.

DOI:https://doi.org/10.1109/HST.2017.7951802

[9] Louis Dureuil. 2016. Analyse de code et processus d’évaluation des composants sécurisés contre l’injection de faute.

phdthesis. Communauté Université Grenoble Alpes. Retrieved October 16, 2017 from https://tel.archives-ouvertes.fr/tel-

01403749/document

[10] Julien Proy, Karine Heydemann, Fabien Majéric, Albert Cohen, and Alexandre Berzati. 2019. Studying EM Pulse

Effects on Superscalar Microarchitectures at ISA Level. arXiv:1903.02623 [cs] (March 2019). Retrieved March 12, 2019

from http://arxiv.org/abs/1903.02623

[11] J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-Peyroula, and A. Papadimitriou, “Cross-layer analysis of software fault

models and countermeasures against hardware fault attacks in a RISC-V processor,” Microprocessors and Microsystems,

vol. 71, p. 102862, Nov. 2019, doi: 10.1016/j.micpro.2019.102862.

[12] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and P. de Choudens, “FISSC: A Fault Injection and Simulation

Secure Collection,” 2016, pp. 3–11.

27

Skip/skip_mem/skip_wb 1-bit 2-bit 3-bit 4-bit 5-bit

Assembly contexts 2.8/3.3/3.3 2.9/3.6/3.5 3.1/3.6/3.5 3.0/3.5/3.4 3.2/4.2/4.0

VerifyPIN 8.0/8.6/8.4 8.2/8.7/8.5 8.1/8.8/8.5 8.5/9.1/8.8 8.3/8.8/8.5

LittleXorKey 3.2/3.5/4.2 3.0/3.4/4.5 3.0/3.3/4.1 2.9/3.2/4.0 2.7/3.0/3.9

 Coverage of the instruction skip model, and of 2

more advanced skip models for various injection

campaigns

